US009411601B2

az United States Patent (10) Patent No.: US 9,411,601 B2
Zimmer et al. 45) Date of Patent: Aug. 9, 2016
(54) FLEXIBLE BOOTSTRAP CODE (52) US.CL
ARCHITECTURE CPC oo GOG6F 9/4401 (2013.01)
(58) Field of Classification Search
(71) Applicants: Vincent J. Zimmer, Federal way, WA CPC vt GOO6F 9/441; GOGF 9/44505
USPC oo 713/1, 2, 100

(US); H. P. Anvin, San Jose, CA (US);
Michael A. Rothman, Puyallup, WA
(US); David C. Estrada, Beaverton, OR
(US); Nicholas J. Yoke, Tigard, OR
(US); Gopinatth Selvaraje, Portland,
OR (US)

(72) Inventors: Vincent J. Zimmer, Federal way, WA
(US); H. P. Anvin, San Jose, CA (US);
Michael A. Rothman, Puyallup, WA
(US); David C. Estrada, Beaverton, OR
(US); Nicholas J. Yoke, Tigard, OR
(US); Gopinatth Selvaraje, Portland,
OR (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 236 days.

(21) Appl. No.: 14/128,116

(22) PCT Filed: Oct. 29, 2013

(86) PCT No.: PCT/US2013/067172
§371 (o)D),
(2) Date: Dec. 20,2013

(87) PCT Pub. No.: 'WO02015/065323
PCT Pub. Date: May 7, 2015

(65) Prior Publication Data
US 2015/0121055 Al Apr. 30, 2015
(51) Imt.ClL
GOG6F 9/00 (2006.01)
GOG6F 9/24 (2006.01)
GO6F 15/177 (2006.01)
GO6F 9/44 (2006.01)

Initiate Boot Operations

Includes
Flexible Modules?
302

Continue with Default
Boot Operations
304

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

5,999,952 A * 12/1999 Jenkinsccccwn. GO6F 1/16
361/679.21

6,321,332 B1* 11/2001 Nelson GOG6F 9/4403
711/202

6,601,166 B1* 7/2003 Ayyar GOG6F 9/4416
709/222

(Continued)
OTHER PUBLICATIONS

Smith, Rod, Managing EFI Boot Loaders for Linux: Basic Principles,
Apr. 27, 2013, http://www.rodsbooks.com/efi-bootloaders/prin-
ciples.html.*

(Continued)

Primary Examiner — Mark Connolly

(74) Attorney, Agent, or Firm — Grossman,
Perreault & Pfleger, PLL.C

Tucker,

(57) ABSTRACT

The present disclosure is directed to flexible bootstrap code
architecture. A device may comprise equipment for operating
the device and an operating system (OS) for operating the
equipment. A boot module may also be included in the device
to execute boot operations. At least one flexible boot (FB)
module in the boot module may interact with the equipment
and/or OS during the boot operations to cause the boot opera-
tions to become device-specific. An example boot module
may comprise a plurality of FB modules. An example FB
module may verify a device/chipset identification and may
control the boot operations based on the identification. Other
example FB modules may select resources to load based on an
OS type, may provide a boot configuration table location for
use in OS runtime boot configuration or may load variables
from a preload variable directory for use in configuring boot
operations.

24 Claims, 7 Drawing Sheets

Contiriue with Device-
Specific Boot Operations
306

US 9,411,601 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,643,772 B1* 11/2003 Aguilar GOG6F 9/4416
713/2
6,668,318 B1* 12/2003 Jenkins GO6F 1/16
713/1
7,080,246 B2* 7/2006 Rothman ... GOG6F 9/4411
713/100
7,107,441 B2* 9/2006 Zimmer GOG6F 9/4411
713/1
8,745366 B2* 6/2014 Wyatto.coooiinn GO09G 5/36
345/522
2004/0148596 Al* 7/2004 Watson GO6F 8/65
717/168
2008/0155071 Al* 6/2008 Lindstrom HO4W 8/205
709/220
2008/0172554 Al* 7/2008 Armstrong GO6F 9/45541
713/2
2011/0010747 Al* 1/2011 Liang HO4N 21/43607
725/116

OTHER PUBLICATIONS

ROG, ASUS Z77 Motherboard UEFI BIOS Tuning Guide, Jul. 16,
2012, http://rog.asus.com/129672012/maximus-motherboards/asus-
z77-motherboard-uefi-bios-tuning-guide/.*

Raja@ ASUS, ASUS Rampage IV Extreme—UEFI Guide for
Overclocking, Nov. 14, 2011, https://rog.asus.com/forum/
showthread.php?5835-ASUS-Rampage-IV-Extreme-UEFI-Guide-
for-Overclocking.™

Kozierok, Charles, System Boot Sequence, Apr. 17, 2001, http://
www.pcguide.com/ref/mbsys/bios/bootSequence-c. html.*
http://en.wikipedia.orgi/wiki/Linus-Torvalds; page last modified
Jan. 6, 2016, 9 pages.

Torvalds, Linus; “EFI Sucks,” http://www.linuxtoday.com/infra-
structure/linus-torvalds-efi-sucks.html; Linux Today; May 12,2012,
1 page.

Protalinski, Emil; “Microsoft mulling 128-bit versions of Window 8,
Windows 9;” http://arstechnica.com/information-technology/2009/
10/microsoft-mulling-128-bit-versions-of-windows-8-windows-9;
Oct. 7, 2009, 4 pages.

http://edk2 sourceforge.net; Tianocore.org; 1 page.

Shah, Agam; “New boot firmware a step toward 64-bit Windows RT;”
ComputerWorld; May 8, 2013; 3 pages.

Sinfosky, Steven; “Delivering fast boot times in Windows 8;” https://
blogs.msdn.microsoft.com/b8/2011/09108/delivering-fast-boot-
times-in-windows-8); Sep. 8, 2011, S pages.

Unified Extensible Firmware Interface Specification; Version 2.5,
Apr. 2015; Section 21: EFI Byte Code Virtual Machine; pp. 985-
1055.

* cited by examiner

US 9,411,601 B2

Sheet 1 of 7

Aug. 9,2016

U.S. Patent

i

(S0 wieshs Bugessdo

70
suohessdn) og oynadg-aninag

U501
BNpop (8411008 210}

.
]
n

agor
sinpopd {84) 1004 Sgpiety

DROT
Snpop {84} 1008 9(GIKaLd

i1 Buisueg R

npop {84} 1009 2IaIel

(s
awdimby

Vo1 Buisuag

vesl
YNPO (g4} 1009 G

Z01 ainpoy 00

56T somsq

US 9,411,601 B2

Sheet 2 of 7

Aug. 9,2016

U.S. Patent

< "Old

20t 50z
BINNOW 100G SINPOIA JBMD
07 sinpoyy Aouien I.w
202
ANpoy
BUIs50044
{ "—
e bt
1l S
LA Zie g1 807
A BINPOW a-tBei DYNDOYY SOBLBIY BIDOYY
)\/\\m“ UOREOIUNURLOD SUOHEDIINLILIOD S0RYBI JBSN
007 2inpopy weisds
07T 801400

US 9,411,601 B2

Sheet 3 of 7

Aug. 9,2016

U.S. Patent

€ "Old

Fo
sUoHRIS40) 100g
HOBIBE Ul SOURUOY

q0¢c
suogeiadQ 1004 4ats
-BOIAB(] Yl BNLRLOY

: 208
LSNP0 BIGHEY
SBpNIU

fioe
suoiersdn) 100y sleniu;

US 9,411,601 B2

Sheet 4 of 7

Aug. 9,2016

U.S. Patent

v "Old

50
suoielsd(y j0og

SO Yipa snuung

1534

i 7
10413 poday ~ oy
pue suofessd) ¢peziuboney
j00g Logy {

ote
(il esdyg
J0 301A8(3 BSUIG

VEOT suoizsad(1006 SYI0adaS-SoMa0] UBM Bnuguns

¥t | V0T Buisusg 0T
JBwdnb I . | anpoy g4

(1 1esdity £ 83180

US 9,411,601 B2

Sheet S of 7

Aug. 9, 2016

U.S. Patent

S "9ld

EB Faxs
suofesad 100y pea——i 3041 SO UO pasEY
SC Uit SNUUoD {EUIBY SHOAU
33A
0Ig wRE
1047 poday . 809
a {8041 S0 104
pue suonessd)
jBuiay
1004 HOGY

G5
JPPEDT S0 BAIEN
Yl BNUROY

- adh

908
gp) 105 Aisnpy

g

d80t

$PrBsdion
18pROY

0%
18peo]
S0 Le ages

syopesad(y Joog oynadg-a0ima(Yum BNUBUOY

501
80

G617 Buysuag

adki g0

d8ui
SINPOKY 84

US 9,411,601 B2

Sheet 6 of 7

Aug. 9, 2016

U.S. Patent

9 "21d

718
ssampy Bush
aie 4 uonzinByuoen
1004 88a0y

£ig
dqeLen U sdey]
uoeinbyuos wog
§0 SSRIPY 55300V

o
iy Buisn pivHAN U
DRIOIS BGBLEA 85800y

28108 vonembiuony

509
HONRIBA0
JUBLULOHALY SURILINY

-~

TA0E suonrsad(y 1009 2410edg-aoma(] yum BRUUOD

el

SUCHEIRAN
1008 S0 Lim snLRLoT

209
WYHAN Ul BlgeUEA
Ui sjae | vogeinbyucn
100 JO 5SSIPY 0I

s
sige] vonembyuos
100¢ Ut UORRLLIIL
J00g JeOI0) BI0IG

_ J0VE Butpnoig

gy | uoenbyuoy) 100 J0 UOREDD

D801
3NPO g4

US 9,411,601 B2

Sheet 7 of 7

Aug. 9, 2016

U.S. Patent

907
Aioliayy sjqissacoy
-G0 U 81015 pug
HOMUE Y 1008 W04
BNYEA BIQBUEA 190

01
sunnEBd0

81l
sunyessd() ¥l
1008 SO polpoYy 1043 yodey
L BALALOYD
ON
81
e
0} 3380085 uiniay 534
o
HOYLR 1008

Ui sigeen Of B1eC 198

867
1B pue BlEN
BIELBA

¥0L

UDEY 100g RINON

wog g0 Bugsixg
gim ShUIOT

0GL
| fI010830] DRORIG U]
SBIIRUBA

5T suoneisdy) 100G HadS-e0ARE] UM SNURLOT

L7014

SSOEURA 1004 PRORid

0834
anpoK g4

US 9,411,601 B2

1
FLEXIBLE BOOTSTRAP CODE
ARCHITECTURE

TECHNICAL FIELD

The present disclosure relates to device boot operations,
and more particularly, to a flexible bootstrap code that is able
to adapt to different characteristics of the booting device.

BACKGROUND

The rapid pace of development in computing technology
has created a demand for flexibility in regard to interaction
between hardware and software. For example, emerging
computing devices, operating systems (OS), applications,
etc. need to have some degree of interplay so that older
hardware may remain compatible with newer software and
vice versa. The introduction of open architectures has also
created aneed for flexibility. The scenario wherein equipment
may be configured to run only certain software (e.g., an OS)
identified by the equipment manufacturer still exists, but has
been joined by a variety of other providers that may eater to
different equipment/software configurations. These provid-
ers include large companies, small companies, consortiums,
alliances, educational institutions, hobbyists, etc. From this
large array of providers users may incorporate hardware and
software to meet their specific needs, selecting features based
on their requirements for performance, reliability, etc.

While the ability to choose from a variety of solutions may
be enticing to consumers, it does not come without some
challenges. For example, integrating equipment with soft-
ware obtained from different sources may entail the creation
of an OS/hardware combination that was intended or even
envisioned by the various providers. Bootstrap operations
that may be executed during device startup are intended to
establish links between the software aspects and hardware
resources of a device. As the technology within computing
devices continues to evolve, the traditional manner in which
bootstrap operations are implemented is becoming unable to
handle the increasing number of possible device/OS combi-
nations made available by the variety of sources in the mar-
ketplace. The inability for traditional bootstrap operations to
adapt to these combinations is becoming problematic to
development, and has been noted as an impediment to hard-
ware/software integration by some open source software pro-
viders.

BRIEF DESCRIPTION OF THE DRAWINGS

features and advantages of various embodiments of the
claimed subject matter will become apparent as the following
Detailed Description proceeds, and upon reference to the
Drawings, wherein like numerals designate like parts, and in
which:

FIG. 1 illustrates an example device including flexible
bootstrap code architecture in accordance with at least one
embodiment of the present disclosure;

FIG. 2 illustrates an example configuration for a device in
accordance with at least one embodiment of the present dis-
closure;

FIG. 3 illustrates example operations for implementing
flexible bootstrap code architecture in accordance with at
least one embodiment of the present disclosure;

FIG. 4 illustrates example device-specific operations for
sensing a device or chipset identification in accordance with
at least one embodiment of the present disclosure;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates example device-specific operations for
sensing an operating system type in accordance with at least
one embodiment of the present disclosure;

FIG. 6 illustrates example device-specific operations for
providing the location of a boot configuration table to the
operating system in accordance with at least one embodiment
of the present disclosure; and

FIG. 7 illustrates example device-specific operations for
sensing boot variables in a preload directory in accordance
with at least one embodiment of the present disclosure.

Although the following Detailed Description will proceed
with reference being made to illustrative embodiments, many
alternatives, modifications and variations thereof will be
apparent to those skilled in the art.

DETAILED DESCRIPTION

The present disclosure is directed to flexible bootstrap code
architecture. A device may comprise equipment for operating
the device and an operating system (OS) for operating the
equipment. A boot module may also be included in the device
to execute toot operations when the device is activated. At
least one flexible boot (FB) module in the boot, module may
interact with the equipment and/or OS during the boot opera-
tions to cause the boot operations to become device-specific.
An example boot module may comprise separate FB modules
for performing different functions. An example FB module
may verify a device and/or chipset identification and control
the boot operations based on the identification. Other
example FB modules may select resources to load (e.g., a
kernel) based on a determined OS type, may provide the
location of a boot configuration table for use in OS runtime
boot configuration or may load variables from a preload vari-
able directory for use in configuring boot operations.

In one embodiment, an example device may comprise at
least equipment, an OS and a boot module. The equipment
may be to provide functionality in the device. The OS may be
to facilitate operation of the equipment. The boot module may
be to execute boot operations following activation of the
device, the boot module including at least one flexible boot
(FB) module to, for example, interact with at least one of the
equipment or the OS during the boot operations and generate
device-specific boot operations based on the interaction.

In one embodiment, the at least one FB module operates
based on bytecode included in the boot module, the bytecode
being interpreted during the boot operation. The at least one
FB module being to generate device-specific boot operations
based on the interaction may comprise, for example, the at
least one FB module being to cause the boot operations to be
aborted if at least one of a device identification or a chipset
identification is not recognized. The at least one FB module
being to generate device-specific boot operations based on the
interaction may further comprise, for example, the at least one
FB module being to cause a particular kernel to be loaded in
the device during the boot operation based on a word length
associated with the OS. The word length may be sensed based
on, for example, calculating the size of a natural integer
during the boot operations. The at least one boot module
being to interact with at least one of the equipment or the OS
during the boot operations may comprise, for example, the at
least one boot module being to sense boot variables existing
in a particular directory in the device. The at least one FB
module being to generate device-specific boot operations
based on the interaction may further comprise, for example,
the at least one FB module being to cause at least one of data
to be copied from the boot module to the boot variables or data

US 9,411,601 B2

3

to be copied to the boot module from the boot variables prior
to loading the OS in the device.

In the same or a different embodiment, the at least one FB
module being to generate device-specific boot operations
based on the interaction may further comprise, for example,
the at least one FB module being to make information in the
boot module accessible to at least one of the equipment or the
OS by causing a physical address to be written, to a non-
volatile variable in a memory in the device, the physical
address indicating the location of a configuration table asso-
ciated with the boot module in the memory. In such an
instance, the OS may comprise an application program inter-
face to allow the OS to access the contents of the non-volatile
variable in the memory. In one example implementation, the
boot module may be based on the Unified Extensible Firm-
ware Interface (UEFI) specification.

A method consistent with the present disclosure may com-
prise for example, initiating boot operations in a device com-
prising at least equipment, an OS and a boot module, deter-
mining if the boot module includes at least one FB module to
interact with at least one of the equipment or the OS during
the boot operations and performing default boot operations or
device-specific boot operations based on the determination if
the boot module includes at least one FB module. Performing
device-specific boot operations may comprise, for example,
causing the boot operations to be aborted if at least one of a
device identification or a chipset identification, sensed from
the equipment is not recognized. Performing device-specific
boot operations may further comprise, for example, causing a
particular kernel to be loaded in the device during the boot
operation based on a word length associated with the OS. The
word length may be sensed based on, for example, calculating
the size of a natural integer during the boot operations. Inter-
acting with at least one of the equipment or the OS during the
boot operations may comprise, for example, sensing boot
variables existing in a particular directory in the device. Per-
forming device-specific boot operations may further com-
prise, for example, causing at least one of data to be copied
from the boot module to the boot variables or data to be copied
to the boot module from the boot variables prior to loading the
OS in the device. Performing device-specific boot operations
may further comprise, for example, making information in
the boot module accessible to at least one of the equipment or
the OS by causing a physical address to be written to a
non-volatile variable in a memory in the device, the physical
address indicating the location of a configuration table asso-
ciated with the boot module in the memory. In such an
instance, the OS may comprise an application program inter-
face to allow the OS to access the contents of the non-volatile
variable in the memory, in one example implementation, the
boot module may be based on the Unified Extensible Firm-
ware Interface (UEFI) specification.

FIG. 1 illustrates an example device including flexible
bootstrap code architecture in accordance with at least one
embodiment of the present disclosure. The following disclo-
sure may utilize terminology such as “bootstrap,” or “boot” to
reference resources (e.g., hardware, software, etc.) that may
be active (e.g., executing boot operations) after a device is
activated. Boot operations may launch various drivers, a ker-
nel, etc. to provide an interlace over which hardware and
software (e.g., an OS) may interact. Known specifications for
boot code may comprise Basic Input/Output System (BIOS),
Unified Extensible Firmware Interface (UEFI), etc. While
many examples presented herein may utilize terminology,
elements, systems, etc, commonly associated with UEFI,
these references have been made merely for the purpose of
explanation. Various embodiments consistent with the

25

35

40

45

4

present disclosure are not limited to implementation only
using UEFI, and may employ coding based on other boot
specifications.

FIG. 1 discloses an example device including flexible boot-
strap code architecture. In general, device 100 may be any
processor-driven computing device. Examples of device 100
may include, but are not limited to, a mobile communication
device such as a cellular handset or a smartphone based on the
Android® OS, iOS®, Windows® OS, Blackberry® OS,
Palm® OS, Syrabian® OS, etc., a mobile computing device
such as a tablet computer like an iPad®, Surface®, Galaxy
Tab®, Kindle Fire®, etc., an Ultrabook® including a low-
power chipset manufactured by Intel Corporation, a netbook,
a notebook, a laptop, a palmtop, etc., a typically stationary
computing device such as a desktop computer, a server, a
set-top box, a smart television, a specialized controller (e.g.,
automation controller), etc. Device 100 may comprise boot
module 102, equipment 104 and OS 106. Boot module 102
may comprise hardware such as a non-volatile (NV) memory
in which boot code may be stored. Boot code typically
includes compiled program code that executes boot opera-
tions when device 100 is activated (e.g., due to device 100
powering up, from a command to reboot device 100, etc.). In
general, boot operations may configure device 100 so that
equipment 104 may be able to interact with OS 106. Equip-
ment 104 may include at least any hardware in device 100, OS
106 may comprise a software-based control system for man-
aging operations in device 100.

Boot module 102 may comprise, for example, FB module
108A, FB module 308B, FB module 108C, FB module
108D . . . FB module 108# (collectively, FB modules
108A . ..n). While five (5) FB modules 308A . . . n have been
illustrated in FIG. 1, in practice the number of FB modules
108A . . . n may vary depending upon the particular imple-
mentation. In one embodiment, FB modules 108A . . . n may
be portions of code within the boot code executed by boot
module 102 when device 100 is activated. During operation,
FB modules 108A . . . n may interact with equipment 104
and/or OS 106 as shown by interactions 110A, 110B, 110C
and 110D (collectively interactions 110A . . . D). Examples
interactions 110A . . . D may include sensing 110A, sensing
110B, providing 110C and sensing 110D. In sensing 110A,
110B and 110D, FB modules 108A, 108B and 108D, respec-
tively, may determine some characteristic of equipment 104
and/or OS 106 for use in formulating device-specific boot
operations 112. Alternatively, in providing 110C. FB module
108C may provide information to equipment 104 and/or OS
106 during device specific boot operations 112. Examples of
FB modules 108A . . . D, interactions 110A . . . D and how
interactions 110A . . . D may affect device-specific boot
operations 112 will be disclosed further in regard to FIG. 3 to
7.

FIG. 2 illustrates an example configuration for a device in
accordance with at least one embodiment of the present dis-
closure. In particular, device 100" may be able to perform
example functionality such as disclosed in FIG. 1. However,
device 100' is meant only as an example of equipment usable
in embodiments consistent with the present disclosure, and is
not meant to limit these various embodiments to any particu-
lar manner of implementation.

Device 100" may comprise, for example, system module
200 configured to manage device operations. System module
200 may include, for example, processing module 202,
memory module 204, power module 206, user interface mod-
ule 208 and communication interface module 210. Device
100" may also include communication module 212 that may
interact with communication interface module 210. While
communication module 212 has been shown separately from

US 9,411,601 B2

5

system module 200, the example implementation of device
100" has been provided merely for the sake of explanation
herein. Some or all of the functionality associated with com-
munication module 212 may also be incorporated in system
module 200.

In device 100", processing module 202 may comprise one
or more processors situated in separate components, or alter-
natively, one or more processing cores embodied in a single
component: (e.g., in a System-on-a-Chip (SoC) configura-
tion) and any processor-related support circuitry (e.g., bridg-
ing interfaces, etc.). Example processors may include, but are
not limited to, various x86-based microprocessors available
from the Intel Corporation including those in the Pentium,
Xeon, Itanium, Celeron, Atom, Core i-series product fami-
lies. Advanced RISC (e.g., Reduced Instruction Set Comput-
ing) Machine or “ARM” processors, etc. Examples of support
circuitry may include chipsets (e.g., Northbridge, South-
bridge, etc. available from the Intel Corporation) configured
to provide an interface through which processing module 202
may interact, with other system, components that may be
operating at different speeds, on different buses, etc, in device
100'. Some or all of the functionality commonly associated
with the support circuitry may also be included in the same
physical package as the processor (e.g., such as in the Sanely
Bridge family of processors available from the Intel Corpo-
ration).

Processing module 202 may be configured to execute vari-
ous instructions in device 100". Instructions may include pro-
gram, code configured to cause processing module 202 to
perform activities related to reading data, writing data, pro-
cessing data, formulating data, converting data, transforming
data, etc. Information (e.g., instructions, data, etc.) may be
stored in memory module 204. Memory module 204 may
comprise random access memory (RAM) or read-only
memory (ROM) in a fixed or removable format. RAM may
include volatile memory configured to hold information dur-
ing the operation of device 100' such as for example, static
RAM (SRAM) or Dynamic RAM (DRAM). ROM may
include non-volatile (NV) memory configured with boot
module 102' (e.g., based on BIOS, UEF], etc.) to provide
instructions when device 100" activates, programmable
memories such as electronic programmable ROMs
(EPROMS), Flash, etc. Other fixed/removable memory may
include, but are not limited to, magnetic memories such as, for
example, floppy disks, hard drives, etc., electronic memories
such as solid state flash memory (e.g., embedded multimedia
card (eMMC), etc.), removable memory cards or sticks (e.g.,
micro storage device (uSD), USB, etc.), optical memories
such as compact disc-based ROM (CD-ROM), etc.

Power module 206 may include internal power sources
(e.g., a battery) and/or external power sources (e.g., electro-
mechanical or solar generator, power grid, fuel cell etc), and
related circuitry configured to supply device 100" with the
power needed to operate. User interface module 208 may
include equipment and/or software to allow users to interact
with device 100" such as, for example, various input mecha-
nisms (e.g., microphones, switches, buttons, knobs, key-
boards, speakers, touch-sensitive surfaces, one or more sen-
sors configured to capture images and/or sense proximity,
distance, motion, gestures, orientation, etc.) and various out-
put mechanisms (e.g., speakers, displays, lighted/flashing
indicators, electromechanical components for vibration,
motion, etc.). The equipment in user interface, module 208
may be incorporated within device 100' and/or may be
coupled to device 100" via a wired or wireless communication
medium.

10

15

20

25

30

35

40

45

50

55

60

65

6

Communication interface module 210 may be configured
to manage packet routing and other control functions for
communication module 212, which may include resources
configured to support wired and/or wireless communications,
in some instances, device 102' may comprise more than one
communication module 212 (e.g., including separate physi-
cal interface modules for wired protocols and/or wireless
radios) all managed by a centralized communication interface
module 210. Wired communications may include serial and
parallel wired mediums such as, for example, Ethernet, Uni-
versal Serial Bus (USB), Firewire, Digital Video Interface
(DVI), High-Definition Multimedia Interface (HDMI), etc.
Wireless communications may include, for example, close-
proximity wireless mediums (e.g., radio frequency (RF) such
as based on the Near Field Communications (NFC) standard,
infrared (IR), etc.), short-range wireless mediums (e.g., Blue-
tooth, WLAN, Wi-Fi, etc.) and long range wireless mediums
(e.g., cellular wide-area radio communication technology,
satellite-based communications, etc.). In one embodiment,
communication interface module 210 may be configured to
prevent wireless communications that are active in commu-
nication module 212 from interfering with each other. In
performing this function, communication interface module
210 may schedule activities tor communication module 212
based on, for example, the relative priority of messages await-
ing transmission. While the embodiment disclosed in FIG. 2
illustrates communication interface module 210 being sepa-
rate from communication module 212, it may also be possible
for the functionality of communication interface module 210
and communication module 212 to be incorporated within the
same module.

FIG. 3 illustrates example operations for implementing
flexible bootstrap code architecture in accordance with at
least one embodiment of the present disclosure. Initially, the
execution of some or all of the operations disclosed in FIG. 3
to 7 may be orchestrated through the use of an interpreted
boot code instead of a traditional compiled boot code. The use
of an interpreted boot code over a compiled boot code may
allow for logical operations to be made during execution of
the boot code, and thus, for the activities occurring in the boot
code to be modified based on interactions 110A . .. D.In an
example implementation where boot code based on the UEFI
specification is utilized, EFI byte code (BBC) is an inter-
preted byte code that may be employed to implement example
operations such as disclosed in FIG. 3 to 7, BBC was origi-
nally designed for supporting portable drivers in host bus
adapter CUBA) cards on the peripheral component intercon-
nect (PCI) bus, but may lie repurposed for general use in
executing various boot-related operations such as disclosed in
the following examples.

FIG. 3 discloses a general operational flow consistent with
various embodiments of the present disclosure. In operation
300, boot operations may be initiated in device 100. For
example, device 100 may be powered on from an unpowered
state, may be rebooted from a powered state, etc. A determi-
nation may then be made in operation 302 as to whether boot
module 102 in device 100 includes at least one FB module
108A . . . n. If it is determined in operation 302 that boot
module 102 does not include at least one FB module
108A . .. n, then in operation 304 device 100 may continue
with default boot operations. On the other hand, if in opera-
tion 302 it is determined that device 102 includes at least one
FB module 108A . . . n, then in operation 306 device 100 may
continue with device-specific hoot operations. FIG. 4 to 7
disclose examples of device-specific boot operations that may
be implemented alone or in combination in various embodi-
ments consistent with the present disclosure.

US 9,411,601 B2

7

FIG. 4 illustrates example device-specific operations for
sensing a device or chipset identification in accordance with
at least one embodiment of the present disclosure. In FIG. 4,
example boot operations are disclosed that may control
whether device 100 may be booted based on device or chipset
identification (ID), For example, as the variety of providers
for hardware and software continues to expand, so do the
various combinations of equipment 104 and/or OS 106 that
may be implemented. It may be advantageous to both com-
puting device manufacturers and end users to allow only
certain equipment 104 (e.g., processors, memory, etc.) to be
employed from a compatibility, performance or even strategic
standpoint. In one scenario, a manufacturer may utilize func-
tionality such as disclosed in FIG. 4 to ensure that quality is
maintained in the computing products delivered to their cus-
tomers regardless of the ability to swap out equipment 104 by
the supply chain, user, etc. Further, technology may be pro-
tected by ensuring that only certain binaries can be used with
certain equipment 104, the appeal of theft may be diminished
by making it difficult to swap in stolen equipment 104, etc.

In operation 400, a device or chipset ID may be sensed
(e.g., by FB module 108A). In an instance of where UEFI is
utilized, UEFI drivers can be delivered as binary images in the
.efi PE/COFF format that are compatible with an EBC inter-
preter. The resulting UEFI-based interpreted bytecode may
be employed to probe device 100 for a specific device or
chipset ID. Moreover, tamper-resistant software may be
employed so that FB module 108 A may not be reverse-engi-
neered (e.g., for the purpose of defeating the device/chipset
1D verification). The drivers may further be encapsulated as
authenticated code modules (ACMs) which may be signed by
achipsetkey (e.g., in a trusted execution environment such as
a secure enclave). The device or chipset ID may correspond to
a manufacturer of the device or chipset, a model of the device
or chipset, a serial number of the device or chipset, etc.
Chipset ID may further include an ID corresponding to an
individual component in the chipset (e.g., if available). A
determination may then be made in operation 402 as to
whether the device or chipset ID is recognized. Ifin operation
402 the device or chipset 1D is recognized, then in operation
404 the device may be allowed to continue with OS boot
operations. Alternatively, if in operation 402 the device or
chipset ID is not recognized, then in operation 406 the boot
operation may be aborted and an error may be reported. Error
reporting may include, for example, a visible alert and/or an
audible alarm presented via user interface module 208, a
message being sent outside, of device 100 via communication
module 212 (e.g., to the device manufacturer), etc. Following
the report, aborting the boot operations may result in device
100 powering down.

FIG. 5 illustrates example device-specific operations for
sensing an operating system, type in accordance with at least
one embodiment of the present disclosure. FB module 108B
in FIG. 5 may be configured to sense at least an OS type
during execution of boot operations. For example, existing
PC/AT BIOS may be able to launch a 32-bit or 64-bit OS.
However, in instances where boot module 102 is based on
UEFL boot module 102 can only launch an OS kernel that was
compiled against the same application binary interface (ABI)
as boot module 102 (e.g., a 64-bit UEFI can only launch a
64-bit UEFI-aware OS’s). This restriction creates a problem
because device 100 cannot validate multiple OS ABIs (e.g.,
32-bit or 64-bit), and thus, the flexibility of device 100 to be
reconfigured with another OS 106 is severely limited.

In one embodiment, functionality may be incorporated into
the boot operations of device 100 to allow for appropriate
resources to be launched based on OS 106. In operation 500

10

15

20

25

30

35

40

45

50

55

60

65

8

a loader for OS 106 may be selected. A determination may
then be made in operation 502 as to whether the loader is
interpretive. Similar to the example disclosed in FIG. 4, UEFI
drivers delivered as binary images in the .efi. PE/COFF for-
mat may be employed by an EBC interpreter to perform
sensing 110B. If in operation 502 it is determined that the OS
loader selected in operation 500 is not interpretive, then in
operation 504 the boot operations may continue with a native
(e.g., default) OS loader. If in operation 502 it is determined
that the selected OS loader is interpretive, then in operation
506 a query may be performed for the type of OS 106. Con-
sistent with the present disclosure, various queries may be
performed in operation 506. For example, high-level queries
may return OS type, manufacturer, included features, serial
number, etc. A more portable way in which to determine the
type of OS 106 may be to calculate a size for a natural integer
in OS 106. When UEFI is employed, integer size may be
determined by the “sizeof(INTN)” command. Integer size
may be determinative of OS type in that the size of an integer
in a 32-bit OS is smaller than the size in a 64-bit OS.

A determination may then be made it) operation 508 as to
whether a kernel is present in device 100 corresponding to the
type determined for OS 106. If in operation 508 it is deter-
mined that an appropriate kernel does not exist in device 100,
then in operation 510 the boot operations may be aborted and
an error reported. Similar to the above, in reporting the error
an alert message may be displayed and/or an audible alarm
may be generated in device 100, possibly along with infor-
mation being transmitted (e.g., to the manufacturer of device
100). If in operation 508 it is determined that at least one
kernel in device 100 is compatible to OS 106, then in opera-
tion 512 the compatible kernel may be invoked (e.g., by FB
module 108B). Following loading of the kernel, in operation
514 OS boot operations may continue.

FIG. 6 illustrates example device-specific operations for
providing the location of a boot configuration table to the OS
in accordance with at least one embodiment of the present
disclosure, in general, it may be necessary at times for end
users to access boot configuration settings in device 100. Boot
configuration settings are typically accessed by interrupting
the boot operations in device 100 to bring up a rudimentary
user interface. While this manner of configuration has been
satisfactory, in a competitive market for computing devices
there is an continual effort, to increase user experience. One
way that user experience may be improved is through a better
looking/functioning user interface. However, the ability to
reengineer the user interface provided by boot module 102 is
limited by various factors such as the limited size of the NV
memory in boot module 102, the desire to not “reinvent the
wheel” while also risking infringement of the intellectual
property of other parties related to user interfaces, etc.

One possible solution is to move the boot configuration
operations to an OS runtime application. This would allow a
user to configure boot operations in an environment that is
familiar, and thus, improving user experience. However, at
least one problem with moving boot configuration to a runt-
ime application is that the boot configuration information is
not typically exposed to OS 106. Consistent with the present
disclosure, boot configuration may be moved to an OS runt-
ime application by informing OS 106 of the location in
memory of the boot configuration information. Using UEFI
as an example, the EFI System Table is a data structure that
encapsulates the state information of the EFI Operational
Environment. The EFI System Table may comprise boot ser-
vice function pointers, runtime service function pointers, ver-
sion information and an extensible set of global unique iden-
tifier (GUID)/pointer pairs. The first set of services may only

US 9,411,601 B2

9

be germane prior to pre-boot agents (e.g., operating system
loaders) that wish to leverage EF1 services and device drivers
prior to the instantiation of said drivers in the OS environ-
ment. The next set of services may be callable from the OS
runtime environment, but may only be callable by the OS
kernel directly in order to guarantee mutual exclusion and
controlled access. The GUID/Pointer pairs are an extensible
collection of 2-tuples. There is a boot service application
programming interface (API) that may allow agents to regis-
ter the two values with the EFI core. Documented GUIDs
already provided to support OS 106 via this APl may include,
but are not limited to, a pointer to the advanced configuration
and power interface (ACPI) table, a pointer to the system
management BIOS (SMBIOS), and a pointer to the system
abstraction layer (SAL) system table. But as this interface
only stipulates the naming and pointer, and the namespace of
possible GUIDs is unbounded, there is opportunity for other
systems to register domain-specific information in this table,
which is also known as the EFI configuration table. Making
the EFI configuration table accessible to 106 allows ACPI
operational, regions to be called into the platform, logic, and
in-turn, allows physical address of content registered with the
platform to be retrieved. Exposing the EFI configuration table
to OS 106 in this manner allows ACPI-compliant OS agents to
ask in a standard fashion “where is the EFI Configuration
Table” OS 306 may then automatically act as a proxy to the
underlying firmware.

In operation 600, critical information may be stored in a
boot configuration table (e.g., EFI configuration table). For
example, applications, drivers, etc. may store critical datain a
pre-boot phase of system initialization following the activa-
tion of device 100. In UEFI-based boot modules 102, the
location of this critical data in memory may be recorded
utilizing GUID/pointer pairs stored in the EFI configuration
table. While access to the critical data is needed to support
boot configuration in the runtime environment, existing com-
puting device architecture does not expose the EFI configu-
ration table to non-kernel applications drivers.

To circumvent this impediment, in operation 602 the
address of the boot configuration table may be stored in an
NV variable (e.g., a variable stored in NV memory in boot
module 102). For example, FB module 108C may cause the
address to be stored in the NV variable, OS boot operations
may then be continued in operation 604 followed by device
100 entering the runtime environment in operation 606.
Device 100 may continue in the runtime environment until a
determination is made in operation 608 that access is required
to the boot configuration table. The determination in opera-
tion 608 may be based on, for example, the activation, of a
boot configuration application by a user of device 100. In
operation 610 the variable containing the address of the con-
figuration table may be accessed. In particular, OS 106 must
expose access to the NV variable through an OS API. The
runtime application may access the NV variable utilizing the
API, and in operation 612 may determine the physical address
of the boot configuration table based on the contents of the
NV variable. The address of the boot configuration, table may
be employed by the runtime application in operation 614 to
access the boot, configuration table. Accessing the boot con-
figuration table may comprise, for example, reading the con-
tents of the boot configuration table, editing the contents of
the boot configuration table, storing new values in the boot
configuration table, etc. Accessing the boot configuration
table may be accompanied by user interface-related activities
such as displaying some or ail of the contents of the boot

20

40

45

50

10

configuration table to a user, facilitating changes to the con-
tents of the boot configuration table based on user interaction,
etc.

FIG. 7 illustrates example device-specific operations for
sensing boot variables in a preload directory in accordance
with at least one embodiment of the present, disclosure. In
general, FIG. 7 describes operations wherein sensing 110D
may be performed by FB module 108D to determine whether
get/set operations are required for boot variables stored in a
preload directory. In existing systems, it may be desirable to
map physical addresses in boot module 102 to virtual
addresses in a kernel (e.g., invoked during the boot opera-
tions) so that OS 106 doesn’t need to effect a mode transition
when making runtime calls to boot module 102. When boot
module 102 is based on UEF]I, a function that may be utilized
to execute the above mapping is SetVirtualAddress()
(SetVA). In some instances it may be advantageous to execute
the mapping more than once. For example, Linux includes
functions like “KEXEC” wherein the loaded kernel may
invoke another kernel. Since SetVA is not idempotent (e.g.,
SetVA cannot be called more than once without changing the
result beyond the initial call), the invocation of other kernels
by KEXEC will result in further SetVA calls that will break
device 100. Existing Linux kernels employ KEXEC for
recovery, provisioning, upgrades, etc. The pervasive use of
functions like KEXEC may not be exclusive to the Linux OS,
and thus, the inability to use functions like KEXEC may
impede the acceptance of specifications like UEFI. Fixing
this problem has proved to be difficult since it has existed for
many years.

Consistent with the present disclosure, a safer approach
may be to give OS 106 an alternative to making runtime calls
(e.g., relying on SetVA) that may cause device 100 to crash. In
situations where boot module 102 is based on UEFI, a fre-
quently used runtime call, is “Set/Get Variable()” that is
exposed via the “efivars” interface in Linux. Instead of having
efivars invoke “ST—=RT—=Get/SetVariable” to get and/or set
variables in boot module 102 at runtime, the intended UEFI
variable name and data (for sets) and the name (for gets) may
be copied to a directory in the EFI System Partition (ESP)
called, for example, “/variable”” OS 106 may then cause
device 100 to reboot. Upon reboot, UEF] firmware in boot
module 102 may apply the variable update or copy the active
contents of the variable to this directory. In this manner, OS
106 may use its present disk access idioms to stage commu-
nication with the UEFI firmware without have to share the
machine at runtime, and thus, risk causing an error.

Initially, in operation 700 a determination may be made as
to whether variables exist in a preload directory (e.g., “/vari-
ables”). The existence of variables in the preload directory
may indicate that get and/or set operations are required before
boot operations may continue. If in operation 700 it is deter-
mined that no variables exist in the preload directory, then
boot module 102 may continue with existing OS boot opera-
tions in operation 702, If in operation 700 it is determined that
variables exist in the preload directory, then in operation 704
a boot partition may be mounted in device 100. A determina-
tion may then be made in operation 706 as to whether variable
name and a data is stored in the preload directory (e.g., indi-
cating the need for a set operation) or just variable name (e.g.,
indicating the need for a get operation). If in operation 704 it
is determined that the preload directory does not include
variable name and data, then in operation 708 a get operation
may be performed to obtain the value of the variable from the
boot partition, the value being stored in a memory in device

US 9,411,601 B2

11

100 accessible to OS 106. Operation 708 may then be fol-
lowed by a return to operation 702 where the OS boot opera-
tions may continue.

If in operation 706 it is determined that the preload direc-
tory includes both variable name and data, then in operation
710 a set operation may be performed to set the data in the
preload directory to the corresponding variable in boot mod-
ule 102. A determination may then be made in operation 712
as to whether the set operation was successful. If in operation
712 it is determined that the set operation was not successful,
then in operation 714 an error may be reported. Device 100
may then continue with the existing OS boot operation (e.g.,
without the new data being set in boot module 102) in opera-
tion 702. If in operation 712 it is determined that the set was
successful, then in operation 716 the success of the set may be
returned to the caller, and in operation 718 device 100 may
continue with the modified OS boot (e.g., including the new
data from the preload directly that was set in boot module
102).

While FIG. 3 to 7 may illustrate operations according to
different embodiments, it is to be understood that not all of the
operations depicted in FIG. 3 to 7 are necessary for other
embodiments. Indeed, it is fully contemplated herein that in
other embodiments of the present disclosure, the operations
depicted in FIG. 4 to 7, and/or other operations described
herein, may be combined in a manner not specifically shown
in any of the drawings, but still fully consistent with the
present disclosure. Thus, claims directed to features and/or
operations that are not exactly shown in one drawing are
deemed within the scope and content of the present disclo-
sure.

Asused in tin s application and in the claims, a list of items
joined by the term “and/or” can mean any combination of the
listed items. For example, the phrase “A, B and/or C” can
mean A; B; C;Aand B;Aand C; Band C;or A, B and C, As
used in this application and in the claims, a list of items joined
by the term “at least one of”” can mean any combination of the
listed terms. For example, the phrases “at least one of A, B or
C”canmean A; B;C;AandB; Aand C; Band C; orA. B and
C.

Asused in any embodiment herein, the term “module” may
refer to software, firmware and/or circuitry configured to
perform any of the aforementioned operations. Software may
be embodied as a software package, code, instructions,
instruction sets and/or data recorded on non-transitory com-
puter readable storage mediums. Firmware may be embodied
as code, instructions or instruction sets and/or data that are
hard-coded (e.g., nonvolatile) in memory devices, “Cir-
cuitry”, as used in any embodiment herein, may comprise, for
example, singly or in any combination, hardwired circuitry,
programmable circuitry such as computer processors com-
prising one or more individual instruction processing cores,
state machine circuitry, and/or firmware that stores instruc-
tions executed by programmable circuitry. The modules may,
collectively or individually, be embodied as circuitry that
forms part of a larger system, for example, an integrated
circuit (IC), system on-chip (SoC), desktop computers, lap-
top computers, tablet computers, servers, smartphones, etc.

Any of the operations described herein may be imple-
mented in a system that includes one or more storage medi-
ums (e.g., non-transitory storage mediums) having stored
thereon, individually or in combination, instructions that
when executed by one or more processors perform the meth-
ods. Here, the processor may include, for example, a server
CPU, a mobile device CPU, and/or other programmable cir-
cuitry. Also, it is intended that operations described herein
may be distributed across a plurality of physical devices, such

10

15

20

25

30

35

40

45

50

55

60

65

12

as processing structures at more than one different physical
location. The storage medium may include any type of tan-
gible medium, for example, any type of disk including hard
disks, floppy disks, optical disks, compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMSs) such as dynamic and static RAMs, erasable
programmable read-only memories (EPROMs), electrically
erasable programmable read-only memories (EEPROMs),
flash memories, Solid State Disks (SSDs), embedded multi-
media cards (eMMCs), secure digital input/output (SDIO)
cards, magnetic or optical cards, or any type of media suitable
for storing electronic instructions. Other embodiments may
be implemented as software modules executed by a program-
mable control device.

Thus, the present disclosure is directed to flexible bootstrap
code architecture. A device may comprise equipment for
operating the device and an operating system (OS) for oper-
ating the equipment. A boot module may also be included in
the device to execute boot operations. At least one flexible
boot (FB) module in the boot module may interact with the
equipment and/or OS during the boot operations to cause the
boot operations to become device-specific. An example boot
module may comprise a plurality of FB modules. An example
FB module may verify a device/chipset identification and
may control the boot operations based on the identification.
Other example FB modules may select resources to load
based on an OS type, may provide a boot configuration table
location for use in OS runtime boot configuration or may load
variables from a preload variable directory for use in config-
uring boot operations.

The following examples pertain to further embodiments.
The following examples of the present disclosure may com-
prise subject material such as a device, a method, at least one
machine-readable medium for storing instructions that when
executed cause a machine to perform acts based on the
method, means for perforating acts based on the method
and/or a system for a flexible bootstrap code architecture, as
provided below.

Example 1

According to this example there is provided a device. The
device may comprise equipment to provide functionality in
the device, an operating system (OS) to facilitate operation, of
the equipment and a boot module to execute boot operations
following activation of the device, the boot module including
at least one flexible boot (FB) module to interact with at least
one of the equipment or the OS during the boot operations.

Example 2

This example includes the elements of example 1, wherein
the at least one FB module operates based on bytecode
included in the boot module, the bytecode being interpreted
during the boot operation.

Example 3
This example includes the elements of example 2, wherein
the bytecode is stored in an .efi PE/COFF format compatible
with an Extensible Firmware Interface (EFI) bytecode inter-
preter.

Example 4

This example includes the elements of any of examples 1 to
3, wherein the at least one FB module being to interact with at

US 9,411,601 B2

13

least one of the equipment or the OS comprises the at least one
FB module being to sense a characteristic associated with at
least one of the equipment or the OS.

Example 5

This example includes the elements of example 4, wherein
the characteristic comprises at least one of a device identifi-
cation or chipset identification sensed from the equipment.

Example 6

This example includes the elements of example 5, wherein
the at least one FB module is further to cause the boot opera-
tions to be aborted if at least one of the device identification or
the chipset identification is not recognized.

Example 7

This example includes the elements of example 4, wherein
causing operations to be aborted comprises reporting an error
to a user of the device via at least one of a visible or audible
notification.

Example 8

This example includes the elements of any of examples 4 to
7, wherein the characteristic comprises sensing a type for the
OS, the type for the OS including at least whether the OS is a
32-bit OS or a 64-bit OS.

Example 9

This example includes the elements of example 8, wherein
the type for the OS is sensed based on a word length associ-
ated with the OS.

Example 10

This example includes the elements of example 9, wherein
the word length is sensed based on calculating the size of a
natural integer during the boot operations.

Example 11

This example includes the elements of any of examples 9to
10, wherein the at least one FB module is further to cause a
particular kernel to be loaded in the device during the boot
operation based on the word length.

Example 12

This example includes the elements of any of examples 4 to
11, wherein the characteristic comprises boot variables exist-
ing in a particular directory in the device.

Example 13

This example includes the eclements of example 12,
wherein the at least one FB module is further to cause at least
one of data to be copied from the boot module to the boot
variables or data to be copied to the boot module from the boot
variables prior to loading the OS in the device.

Example 14

This example includes the elements of any of examples 1 to
13, wherein the at least one FB module being to interact with

10

15

20

25

30

35

45

50

55

60

65

14

at least one of the equipment or the OS comprises the at least
one FB module being to make information in the boot module
accessible to at least one of the equipment or the OS.

Example 15

This example includes the elements of example 14,
wherein the equipment comprises a memory, the information
to be made accessible including a physical address indicating
the location of a configuration table associated with the boot
module in the memory.

Example 16

This example includes the elements of example 15,
wherein the at least one FB module is further to cause the
physical address to be written to a non-volatile variable in the
memory.

Example 17

This example includes the elements of example 16,
wherein the OS comprises an application program interface
to allow the OS to access the contents of the non-volatile
variable in the memory.

Example 18

This example includes the elements of any of examples 1 to
17, wherein the boot module is based on the Unified Exten-
sible Firmware interface (UEFI) specification.

Example 19

This example includes the elements of any of examples 1 to
18, wherein the at least one FB module is farther to cause the
boot operations to be aborted if at least one of device identi-
fication or chipset identification sensed from the device is not
recognized.

Example 20

This example includes the elements of any of examples 1 to
19, wherein the at least one FB module is farther to cause a
particular kernel to be loaded in the device during the boot
operation based on sensing a word length associated with the
OS.

Example 21

This example includes the elements of any of examples 1 to
20, wherein, based on sensing boot variables existing in a
particular directory in the device, the at least one FB module
is further to cause at least one of data to be copied from the
boot module to the boot variables or data to be copied to the
boot module from the boot variables prior to loading the OS
in the device.

Example 22

This example includes the elements of any of examples 1 to
21, wherein the at least one FB module is further to make
information in the boot module accessible to at least one of
the equipment or OS by causing a physical address to be
written to a non-volatile variable in a memory in the device,

US 9,411,601 B2

15

the physical address indicating the location of a configuration
table associated with the boot module.

Example 23

According to this example there is provided a method. The
method may comprise initiating boot operations in a device
comprising at least equipment, an operating system (OS) and
a boot module, determining if the boot module includes at
least one flexible boot (FB) module to interact with at least
one of the equipment or the OS during the boot operations and
performing default boot operations or device-specific boot
operations based on the determination if the boot module
includes at least one flexible boot (FB) module.

Example 24

This example includes the eclements of example 23,
wherein interacting with at least one of the equipment or the
OS comprises sensing a characteristic associated with at least
one of the equipment or the OS.

Example 25

This example includes the clements of example 24,
wherein the characteristic comprises at least one of a device
identification or chipset identification sensed from the equip-
ment.

Example 26

This example includes the elements of example 25, and
further comprises causing the boot operations to be aborted if
at least one of the device identification or the chipset identi-
fication is not recognized.

Example 27

This example includes the eclements of example 26,
wherein causing operations to be aborted comprises reporting
an error to a user of the device via at least one of a visible or
audible notification.

Example 28

This example includes the elements of any of examples 24
to 27, wherein the characteristic comprises sensing a type for
the OS, the type for the OS including at least whether the OS
is a 32-bit OS or a 64-bit OS.

Example 29

This example includes the eclements of example 28,
wherein the characteristic comprises a word length associated
with the OS.

Example 30

This example includes the eclements of example 29,
wherein the word length is sensed based on calculating the
size of a natural integer during the boot operations.

15

25

30

40

45

55

60

16
Example 31

This example includes the elements of any of examples 29
to 30, and further comprises causing a particular kernel to be
loaded in the device during the boot operation based on the
word length.

Example 32

This example includes the elements of any of examples 24
to 31, wherein the characteristic comprises boot variables
existing in a particular directory in the device.

Example 33

This example includes the elements of example 32, and
further comprises causing at least one of data to be copied
from the boot module to the boor, variables or data to be
copied to the boot module from the boot variables prior to
loading the OS in the device.

Example 34

This example includes the elements of any of examples 23
to 33, wherein interacting with at least one of the equipment
orthe OS comprises making information accessible to at least
one of the equipment or the OS.

Example 35

This example includes the elements of example 34,
wherein the equipment comprises a memory, the information
including a physical address indicating the location of a con-
figuration table associated with the boot module in the
memory.

Example 36

This example includes the elements of example 35, and
further comprises causing the physical address to be written
to a non-volatile variable in the memory.

Example 3

This example includes the elements of example 36,
wherein the OS comprises an application program interface
to allow the OS to access the contents of the non-volatile
variable in the memory.

Example 38
This example includes the elements of any of examples 23
to 37, wherein the boot module is based on the Unified Exten-
sible Firmware Interface (UEFI) specification.
Example 39
This example includes the elements of any of examples 23
to 38, and further comprises causing the boot operations to be
aborted if at least one of device identification or chipset
identification, sensed from the device is not recognized.

Example 40

This example includes the elements of any of examples 23
to 39, and further comprises causing a particular kernel to be

US 9,411,601 B2

17

loaded it) the device during the boot, operation based on
sensing a word length associated with the OS.

Example 41

This example includes the elements of any of examples 23
to 40, and farther comprises sensing boot variables existing in
aparticular directory in the device and causing at least one of
data to be copied front the boot module to the boot variables
or data to be copied to the boot module from the boot variables
prior to loading the OS in the device.

Example 42

This example includes the elements of any of examples 23
to 41, and further comprises making information in the boot
module accessible to at least one of the equipment or OS by
causing a physical address to be written to a non-volatile
variable in a memory in the device, the physical address
indicating the location of a configuration table associated
with the boot module.

Example 43

According to this example there is provided a system
including a device, the system being arranged to perform the
method of any of the above examples 23 to 42.

Example 44

According to this example there is provided a chipset
arranged to perform the method of any of the above examples
23 to 42.

Example 45

According to this example there is provided at least one
machine readable medium comprising a plurality of instruc-
tions that, in response to be being executed on a computing
device, cause the computing device to carry out the method
according to any of the above examples 23 to 42.

Example 46

According to this example there is provided a device con-
figured with a flexible bootstrap code architecture, the device
being arranged to perform the method of any of the above
examples 23 to 42.

Example 47

According to this example there is provided a device hav-
ing means to perform the method of any of the above
examples 23 to 42.

The terms and expressions which have been employed
herein are used as terms of description and not of limitation,
and there is no intention, in the use of such terms and expres-
sions, of excluding any equivalents of the features shown and
described (or portions thereof), and it is recognized that vari-
ous modifications are possible within the scope of the claims.
Accordingly, the claims are intended to cover all such equiva-
lents.

What is claimed:

1. A device, comprising:

equipment to provide functionality in the device;

an operating system (OS) to facilitate operation of the

equipment; and

boot circuitry to:

10

15

20

25

30

35

40

45

50

55

60

65

18

determine, following activation of the device, if the boot
circuitry includes at least one flexible boot (FB) cir-
cuit;

if it is determined that the boot circuitry includes at least
one FB circuit, cause the at least one FB circuit to
interact with at least one of the equipment or the OS,
generate device-specific boot operations based on the
interaction and perform the device-specific boot
operations; and

perform default boot operations if it is determined that
the boot circuitry does not include at least one FB
circuit.

2. The device of claim 1, wherein the at least one FB circuit
operates based on bytecode included in the boot circuitry, the
bytecode being interpreted during the boot operation.

3. The device of claim 1, wherein the at least one FB circuit
being to generate device-specific boot operations based on the
interaction comprises the at least one FB circuit being to
cause the boot operations to be aborted if at least one of a
device identification or a chipset identification is not recog-
nized.

4. The device of claim 1, wherein the at least one FB circuit
being to generate device-specific boot operations based on the
interaction comprises the at least one FB circuit being to
cause a particular kernel to be loaded in the device during the
boot operation based on a word length associated with the OS.

5. The device of claim 4, wherein the word length is sensed
based on calculating the size of a natural integer during the
boot operations.

6. The device of claim 1, wherein the at least one FB circuit
being to interact with at least one of the equipment or the OS
comprises the at least one FB circuit being to sense boot
variables existing in a particular directory in the device.

7. The device of claim 6, wherein the at least one FB circuit
being to generate device-specific boot operations based on the
interaction comprises the at least one FB circuit being to
cause at least one of data to be copied from the boot circuitry
to the boot variables or data to be copied to the boot circuitry
from the boot variables prior to loading the OS in the device.

8. The device of claim 1, wherein the at least one FB circuit
being to generate device-specific boot operations based on the
interaction comprises the at least one FB circuit being to make
information in the boot circuitry accessible to at least one of
the equipment or the OS by causing a physical address to be
written to a non-volatile variable in a memory in the device,
the physical address indicating the location of a configuration
table associated with the boot circuitry in the memory.

9. The device of claim 8, wherein the OS comprises an
application program interface to allow the OS to access the
contents of the non-volatile variable in the memory.

10. The device of claim 1, wherein the boot circuitry is
configured based on the Unified Extensible Firmware Inter-
face (UEF]I) specification.

11. A method, comprising:

initiating boot operations in a device comprising at least

equipment, an operating system (OS) and boot circuitry;
determining if the boot circuitry includes at least one flex-
ible boot (FB) circuit to interact with at least one of the
equipment or the OS during the boot operations; and
performing default boot operations or device-specific boot
operations based on the determination if the boot cir-
cuitry includes at least one FB circuit.

12. The method of claim 11, wherein performing device-

specific boot operations comprises causing the boot opera-

US 9,411,601 B2

19

tions to be aborted if at least one of a device identification or
a chipset identification sensed from the equipment is not
recognized.

13. The method of claim 11, wherein performing device-
specific boot operations comprises causing a particular kernel
to be loaded in the device during the boot operation based on
a word length associated with the OS.

14. The method of claim 13, wherein the word length is
sensed based on calculating the size of a natural integer dur-
ing the boot operations.

15. The method of claim 11, wherein interacting with at
least one of the equipment or the OS during the boot opera-
tions comprises sensing boot variables existing in a particular
directory in the device.

16. The method of claim 15, wherein performing device-
specific boot operations comprises causing at least one of data
to be copied from the boot circuitry to the boot variables or
data to be copied to the boot circuitry from the boot variables
prior to loading the OS in the device.

17. The method of claim 11, wherein performing device-
specific boot operations comprises making information in the
boot circuitry accessible to at least one of the equipment or the
OS by causing a physical address to be written to a non-
volatile variable in a memory in the device, the physical
address indicating the location of a configuration table asso-
ciated with the boot circuitry in the memory.

18. At least one machine-readable storage medium having
stored thereon, individually or in combination, instructions
that when executed by one or more processors result in the
following operations comprising:

initiating boot operations in a device comprising at least

equipment, an operating system (OS) and boot circuitry;
determining if the boot circuitry includes at least one flex-

ible boot (FB) circuit to interact with at least one of the

equipment or the OS during the boot operations; and

10

15

20

25

30

20

performing default boot operations or device-specific boot
operations based on the determination if the boot cir-
cuitry includes at least one FB circuit.

19. The medium of claim 18, wherein performing device-
specific boot operations comprises causing the boot opera-
tions to be aborted if at least one of a device identification or
a chipset identification sensed from the equipment is not
recognized.

20. The medium of claim 18, wherein performing device-
specific boot operations comprises causing a particular kernel
to be loaded in the device during the boot operation based on
a word length associated with the OS.

21. The medium of claim 20, wherein the word length is
sensed based on calculating the size of a natural integer dur-
ing the boot operations.

22. The medium of claim 18, wherein interacting with at
least one of the equipment or the OS during the boot opera-
tions comprises sensing boot variables existing in a particular
directory in the device.

23. The medium of claim 22, wherein performing device-
specific boot operations comprises causing at least one of data
to be copied from the boot circuitry to the boot variables or
data to be copied to the boot circuitry from the boot variables
prior to loading the OS in the device.

24. The medium of claim 18, wherein performing device-
specific boot operations comprises making information in the
boot circuitry accessible to at least one of the equipment or the
OS by causing a physical address to be written to a non-
volatile variable in a memory in the device, the physical
address indicating the location of a configuration table asso-
ciated with the boot circuitry in the memory.

#* #* #* #* #*

